平成 30 年北海道胆振東部地震で生じた火山灰層斜面災害の類型

Typology on volcanic ash covered slope disaster occurred by 2018 Hokkaido Eastern Iburi Earthquake

高見智之(国際航業株式会社)

Tomoyuki Takami

1. はじめに

平成30年9月6日に発生した平成30年北海道胆 振東部地震では,厚真町を中心に多数の斜面災害 による多くの被害が発生した. その多くは表層崩 壊で樽前火山起源の降下軽石層など火山灰層の 崩壊と報告されている1),2).この地震による斜面 崩壊は特定の地域に集中し,発生密度が著しく高 いことが特徴である.また,傾斜30度以下の緩斜 面での崩壊,地すべりなど多様な災害形態が見ら れることも大きな特徴となっている.これは降下 火山灰層分布地の地震時斜面災害の特徴と考え られる. 2018年10月18, 19日に実施された日本応 用地質学会と日本地すべり学会の合同調査団に 参加して現地調査した結果と,国土地理院による 災害撮影空中写真等を活用して,火山灰層分布地 の斜面災害の特徴を考察した.また、このような 地震時の火山灰層分布斜面における多様な災害 発生形態と地質地形条件から類型化し、今後の防 災対策への教訓を考察した.

2. 厚真町付近で発生した斜面災害の概要

(1) 地形地質概要

表層崩壊が集中して発生した厚真町付近は、日 高弧の西縁にあたり、厚真町幌里付近から幌内付 近には新第三紀の軽舞層、萌別層が分布する^{3)、4)、} ⁵⁾. 厚真町吉野付近から幌内付近に分布する軽舞 層は硬質頁岩や砂岩泥岩互層、礫岩などからなり、 北北西-南南東方向の軸を持って背斜・向斜を繰り 返す褶曲構造を形成し、同方向の断層で断たれて いる. 厚真町幌里付近には萌別層のシルト岩砂岩、 礫岩が緩やかな向斜構造を形成して分布する.

軽舞層が分布する吉野から幌里付近は,格子状 ~樹枝状の水系が発達する山地が多く,斜面下部 に明瞭な遷急線が発達することが多い. 萌別層 が分布する幌里付近は,緩斜面が広く丘陵地とな っている. 厚真川両岸には比較的幅の広い谷底 低地が広がり,水田等の農地に利用されている.

また,対象地域付近は支笏火山,樽前火山など の滑動的な火山の東側に当たり,火砕流堆積物や 降下火山灰層が分布する.斜面表層は主に樽前火 山起源の降下軽石層を含む火山灰層が覆っている.

(薄黄色系:新第三紀層,ピンク:火砕流堆積物)

(2) 降下火山灰層の分布と性状

厚真町付近の斜面には、主として樽前火山起 源の軽石層を含む火山灰層がマントルベディン グして分布する.代表的な例として厚真町吉野付 近の斜面の火山灰層を示す(写真-1,2).既往研 究によると、付近には樽前dと呼ばれる降下軽石 が50cm以上、樽前cは30~50cm分布する^の.

図−2 樽前山の主要テフラの等層厚線と位置図 (町田ほか2003,新編火山灰アトラス⁶⁾に加筆) (Ta-d;樽前d, Ta-c;樽前c)

樽前dは、風化してオレンジ色になっていることが多く、径1~2cmの角礫状の軽石を主体とし、やや締まった性状を示す.下部は灰白色で白色の粘土脈が見られることがある.樽前c, bは白色の軽石からなり、非常にルーズな性状を示す.

降下軽石層の間には暗黒色の粘性土(クロボク 層)が挟在する.

写真-1 崩壊地の頭部に露出する火山灰層

写真-2 樽前降下軽石 (d, c, b)

写真-3 崩壊地の滑落面に残存する樽前降下軽 石 (写真-1,2と同じ崩壊地)

3. 斜面災害の発生の特徴

火山灰層分布地における地震時の斜面崩壊は, 特定の地域に集中しており,以下のような特徴が ある.

①発生密度が高い

②傾斜30度以下の緩斜面でも発生している
 ③崩壊土砂の流動性が高く土砂が低地に広がる
 ④谷~渓流を土石流状に流下する
 ⑤薄い表層がずり落ちるように滑落する
 ⑥緩傾斜谷底低地が氷河状に滑動する

写真-4 密集して発生した表層崩壊の斜め写真^か (顔美宇川上流域の厚真町安平町行政界付近)

写真-5 多様な形態の斜面災害"(富里)

写真-6 谷底に大きく広がる崩壊土砂の斜め写 真ⁿ(厚真町日高幌内川下流付近.)

写真-7 厚真町吉野の連続的な斜面崩壊⁷⁾

3.火山灰層斜面災害の類型

平成30年北海道胆振東部地震で発生した火山 灰層の斜面災害は多様な形態を示したが、火山灰 層分布地特有の類似条件で発生している.これま で報告されているようにマントルベディングし た火山灰層、特に樽前d降下軽石層の基底付近で 滑動していることがほとんどであると考えられ る.しかし、斜面の地形や下部の地形条件で土砂 の移動形態が異なり、以下のような類型が見られ る.

- ① 緩斜面シート状滑動型
- ② 崖錐斜面滑動型
- ③ 氷河状谷底堆積物滑動型
- ④ 急斜面表層崩壊型
- ⑤ 扇状地形成アースフロー型
- ⑥ 渓流長距離流動型

(1) 緩斜面シート状滑動型

薄い表層が一体となって斜面上をずり落ち,滑 り落ちて前方の平坦地を移動体が覆う.毛布がず り落ちるように移動体が乱れることなく滑り落 ち,滑落斜面に移動体ブロックの破片が残存する 場合もある(写真-8,10,図-3).傾斜10~15度の 平滑な斜面に降下軽石を含む火山灰層がマント ルベディングする条件で発生していると考えら れる.写真-8の事例では,災害発生前の空中写真 (写真-9)を見ると,斜面先端部が河川の浸食や 農地拡大により斜面下部が切断されていること がわかる.

先端部は平坦な地表面を覆うように滑動する が,平坦地の表層を押してデタッチメント断層状 に変動させて乗り上げている場合がある.

写真-8 シート状滑動型の空中写真⁸⁾ (厚真町幌里,国土地理院2018年9月6日撮影)

図−3 シート状滑動型の正射影図地形図重ね合 わせ図⁸⁾(地理院地図より作成,丘陵地の緩斜面 (10度前後)で発生している.)

写真-9 変動箇所(写真-9,10)の変動前の地形 (国土地理院1975年撮影実体写真⁹⁾)

写真-10 道路を覆ったシート状の移動体⁸⁾ (厚真町幌里の道道,国土地理院2018年9月6日)

(2) 崖錐斜面滑動型

30度前後の比較的急な斜面とその下部の崖錐 性の緩斜面が一体となって滑動している. 平滑な 斜面に降下軽石を含む火山灰層がマントルベデ ィングし,下部に崖錐緩斜面があり,崖錐堆積物 を含めて比較的厚い移動体が乱されずに地すべ り状に滑動していると推定される. 図-4,写真-11 に示す例では,斜面下部の緩傾斜の崖錐斜面に立 っていた人家が移動体に載ったまま20~30m 移 動している.

図-4 崖錐斜面滑動型の例⁸⁾(厚真町幌里,地理 院地図と正射影図を重ね合わせ,地図の建物の記 号と正射影図の建物の位置がずれている)

写真-11 崖錐斜面滑動型の実体写真⁸⁾(幌里)

写真-12 滑動前の実体写真⁹ (国土地理院1975年)

朝日地区の例(写真-13)では斜面中腹から山麓 緩斜面を含んでやや深いすべり(幅約80m,傾斜 約10度前後)が生じている.農地や宅地で多少人 工改変されているが,崖錐斜面が一体となって滑 動して道路を押し出し,小河川を越えて谷底低地 まで移動している.

写真-13 厚真町朝日の地すべり状の滑動⁸⁾(国土 地理院撮影2018年9月6日)

写真-14 朝日地区の滑動前の実体写真⁹⁾(国土地 理院撮影1975年)

写真-15 写真-13と同地区の斜め写真⁷(移動体 が斜面下の道路を押し出している)

(3) 氷河状谷底堆積物滑動型

厚真町本郷の道道では、谷底堆積物が滑動して 移動体の先端部は道路を越えて水路まで達した. 滑落崖頭部から移動体先端までの長さが約630m, 幅約60m前後の細長い移動体が先端部で約90m押 し出した.斜面傾斜は上部で約12度,下部は約2度 で、非常に緩い斜面で滑動している.

移動体の先端~下部には圧縮しわがあり,移動 体中央付近にはクレバス状の引張亀裂が移動方 向に直角に形成されている.移動体側方の斜面に は移動体が斜面を削った横方向の削痕が残され ている.支谷をなす谷型斜面からの緩斜面シート 状滑落型の移動体が合流している.

頭部は谷型斜面で表層が滑落し斜面下部から 谷底に堆積していた崖錐堆積物~谷底堆積物が ほぼ一体となって滑動したと考えられる.移動体 の上部~中部は破砕が進み小ブロック化してい る.移動体の先端部は緩斜面でのシート状滑落型 に類似している.

発生前の地形を見ると、上部の緩傾斜の谷型斜 面には崖錐状の緩斜面があり、主谷の谷底には平 坦な谷底低地が形成されている.このような緩斜 面や低地には、樽前d降下軽石層及びその上位の 火山灰及びその二次堆積物が堆積していたと推 定される.

写真-16 氷河状谷底堆積物滑動型の例(厚真町 本郷、国土地理院撮影2018年9月11日)

図-5 氷河状谷底堆積物滑動型の例(厚真町本郷) (地理院地図と正射影図の重ね合わせ図⁸⁾に加筆)

図-6 氷河状谷底堆積物滑動型の形状(厚真町本 郷,国土地理院正射影図⁸⁾に加筆)

写真─17 氷河状谷底堆積物滑動型の移動体側方 斜面に形成された削痕

(写真右~上部の移動体がポール方向の写真左 上方向に移動)

写真—18 移動体の側方斜面からの現地写真 (中央の谷底の移動体は写真右から左方向に滑動した.)

写真-20 氷河状谷底堆積物滑動型の実体写真⁸⁾ (国土地理院撮影2018年9月6日)

a:氷河状谷底堆積物滑動型の頭部の実体写真(頭 部斜面の削痕は傾斜方向ではなく谷の軸方向を 向いている),b:移動体中央付近の実体写真(側 壁部の黒い下半分は谷底を谷方向に流下した土 砂の削痕であり,上部の白い崩壊地は斜面方向に 滑落した崩壊),c:移動体先端部の実体写真(緩 斜面の谷底低地が下流方向に滑動し,道路を越え て停止している)

写真-21 発生前の緩傾斜の谷底低地(国土地理 院撮影1975年)

(4) 急斜面表層崩壞型

傾斜が35度前後の比較的急な斜面では、表層崩 壊が発生して崩壊土砂が流動化し、広く薄く拡散 して堆積している.写真-22の例では、高さ約80m の谷型斜面が崩壊し、崩壊土砂が斜面下部にある 道路盛土(高さ約10m)を乗り越えてさらに下方 の河床付近にまで流下している.表層の火山灰層

(樽前d軽石層を含む)が滑落して移動体は粉砕 されて流動性を増したと考えられる.この例では, 比較的平滑な斜面の中で谷型斜面が崩壊してい ることに注意が必要である.

写真-22 急斜面表層崩壊型の事例⁷(道路盛土を 乗り越えて崩壊土砂が流下している.)

写真-23 写真-18の実体写真⁸⁾と判読(国土地理 院撮影2018年9月6日)

写真-24 写真-22の崩壊前実体写真⁹(国土地理院撮影2015年,平滑斜面に不明瞭な谷型斜面)

(5) 扇状地形成アースフロー型

傾斜20~30度の谷型斜面表層が滑落し,移動体 がほぐれて土砂状となって流動化し,さらに支谷 からの土砂と合流して谷を流下して谷出口に扇 状地を形成して堆積する.長距離流動した土砂が 平地で氾濫し土砂が広く拡散して堆積すること が特徴であり,低地にある農地や宅地・建物への 影響が大きい.

厚真町幌内の事例(写真-25)では,傾斜約25度 の谷型斜面が崩壊して土砂が渓流出口の低地を 150~200m流走し,扇状地上に広がって堆積して いる.

写真−25 扇状地形成アースフロー型の斜め写真⁷⁾

図-7 扇状地形成アースフロー型の正射影図と 地理院地図重ね合わせ図⁸⁾

写真−26 扇状地形成アースフロー型の実体写真⁸ (国土地理院撮影2018年9月6日)

(6) 渓流長距離流動型

斜面崩壊が密集して発生した渓流流域内では, 支渓流からの土砂が合流して渓流をさらに下流 へ長距離流動している例がある.流下距離は数km に及ぶものがある.これは流域の上流域で発生し た斜面崩壊が,アースフローとなって長距離流動 して下流域に大きな災害をもたらすものとして 注意が必要である.

厚真町のメナの沢川の事例(図-8)では,傾斜 30度前後の多数の谷型斜面の崩壊土砂が合流し て V 字谷状の渓流を約2.5km流下し,流域内で停 止している.渓流の中下流部の渓床勾配は約2~4 度である.

図-8 渓流長距離流動型の例(地理院地図と正射 影図を重ね合わせ⁸⁾)

図-9 流動経路と地形(地理院地図に加筆)

写真-27 発生前の地形(国土地理院撮影 1975 年 ⁹⁾, 樹枝 状の水系が発達し、V字谷の支渓流が合流する)

写真-28 長距離流動した渓流の堆積状況(実体視) (国土地理院撮影 2018 年 9 月 6 日⁸⁾)

写真-29 長距離流動した渓流の発生前の地形(国土地理 院撮影 2015 年 ⁹⁾)

表-1 平成 30 年北海道胆振東部地震時の火山灰層斜面災害の類型

	運動	類型	模式図	形態的特徴	地質地形条件
1	スライド	緩斜面シート状 滑動型		薄い表層が一体となって 斜面上をずり落ち,滑り 落ちて前方の平坦地を移 動体が覆う.滑落面に移 動体の断片が残存するこ とがある.	傾斜約30度以下の平滑な 斜面に降下軽石を含む火山 灰層がマントルベディング する.
2		崖錐斜面 滑動型		30度前後の比較的急な斜 面とその下部の崖錐斜面 が一体となって滑動し, 移動体の乱れが少ない.	傾斜約30度前後の平滑な 斜面に降下軽石を含む火山 灰層がマントルベディング し、下部に崖錐緩斜面があ る。
3		氷河状谷底堆積物 滑動型		緩傾斜の細長い形状の谷 底堆積物全体が滑動して 氷河状に下流側に滑動し て押し出す.	降下軽石層を含む火山灰層 及びその二次堆積物が分布 する。緩傾斜の平滑な谷底 堆積物が分布する.
4	ス	急斜面表層崩壊型		35度前後の急斜面が表層 崩壊し,流動化した崩壊 土砂が下部〜平坦地に広 がって堆積する.	傾斜35度前後の比較的急 傾斜の谷型斜面で,表層に 緩い火山灰層が堆積する.
5	フイド→フロー	扇状地形成 アースフロー型		ーつまたは複数の谷型斜 面の表層が崩壊して土砂 が下部の谷〜渓流を流下 して谷出口に扇状地を形 成して堆積する.	降下軽石層を含む火山灰層 及びその二次堆積物が分布 する。谷型斜面とその下部 の谷があり出口部に平坦地 が広がる。
6		渓流長距離流動型	(BBBBBB)	流域内の多くの斜面が表 層崩壊し、流下した土砂 が合流して渓流を長距離 流下する.	降下軽石層を含む火山灰層 が分布する。樹枝状〜格子 状の水系が発達して支渓流 が発達する.

3. 類型化のまとめ

平成 30 年北海道胆振東部地震では,火山灰層 の分布地で非常に多くの多様な斜面災害が発生 した.前述したような斜面災害の事例は,その形 態的特徴と地質地形条件から,表-1のように整理 した.多数の斜面崩壊の中では,この類型の中間 的なものや複合したもの,当てはまらないものも あると思われるが,ある程度災害形態を類型化す ることが今後,同様の災害リスクを抽出する際の 指標となると考えられる.

胆振東部地震による火山灰層の斜面災害の特 徴は、以下の点である.

①傾斜30度以下の緩斜面の表層が一体となって 滑動するタイプ

②崩壊土砂がほぐれて流動化し土石流状に長距 離流動するタイプ

地質条件としては以下の特徴があげられる. ①火山灰層が地形に沿って層状に堆積(マントル ベディング)している.

②降下軽石層と粘性土(古土壌や風成ローム層) が互層となっている.

この地質条件を満たすのは、新期火山周辺、特 に東側の地域で降下軽石やスコリアの到達域に あって、降下軽石層が堆積可能な傾斜が約30度以 下の斜面である.層状の火山灰層の厚さに規制さ れるが、斜面上では1~3mの浅いすべりが生じ、 谷型斜面や崖錐斜面ではやや深いすべりとなる.

このような地形地質条件で地震時に斜面災害 が多発した事例は多く,2016年の熊本地震時の阿 蘇カルデラ付近や1968年の十勝沖地震時の八戸 丘陵などの災害に非常に類似している.

この類似した地質地形条件を持つ地域では,今後,同様の斜面災害が発生するリスクがあると推 定される.火山灰層分布地域では,緩斜面の滑動 と崩壊土砂の長距離流動の二つの災害形態に留 意した対応が重要と思われる.

謝辞

調査団の現地調査に際しては,厚真町役場から 種々ご便宜をいただいた.日本地すべり学会北海 道支部や日本応用地質学会北海道支部の方々に は,地質的知見や災害情報提供等のご指導とご便 宜をいただいた.ここに記して謝意を表します.

参考文献

1) 田近淳ほか: 胆振東部地震現地調査速報, 日本 地すべり学会ホームページ, 2018年.

2) 廣瀬亘ほか: 平成30年北海道胆振東部地震に伴 う厚真町での斜面調査(厚真町東部), 北海道立総 合研究機構環境・地質研究本部地質研究所ホーム ページ, 2018年.

3) 産業技術総合研究所:シームレス地質図, 産業 技術総合研究所ホームページ地質図 Navi.

4)高橋功二・和田信彦:五万分の一地質図幅「穂別」説明書,北海道立地下資源調査所,1987年.
5)松野久也・石田正夫:五万分の一地質図幅「早来」説明書,北海道開発庁,1960年.

6)町田洋・新井房夫:新編火山灰アトラス 日本 列島とその周辺,東京大学出版会,360pp,2003年.

7) 国際航業株式会社:災害

8) 国土地理院:平成30年北海道胆振東部地震に関 する情報,空中写真(垂直写真,正射画像),国土 地理院ホームページ.

9) 国土地理院:地図・空中写真閲覧サービス,国 土地理院ホームページ.