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Abstract 
A new approach for evaluating the permanent displacement including planar block 

slide and wedge block slide of rock mass slope during earthquake is presented, which takes 
degradation of sliding surface (friction weakening with sliding velocity and displacement) 
during earthquake into account. The flow for putting the method into effect is put forward, 
and three cases are studied. The results indicate that the approach is available and 
reasonable to assess the value of the permanent displacement of rock mass slope. The result 
reached by traditional Newmark method(1965) is too small in general compare to the lab 
test result. Traditional Newmark method(1965) is only available to evaluating the rock mass 
slope with small permanent displacement during earthquake. 
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1. Introduction 
 

Earthquake can trigger a large number of earth 
and or rock slides, some of which are capable of 
causing deaths and major damages to major structures, 
important roadways, dam reservoir etc. For example, 
more than 15000 landslides induced by 2008 
Wenchuan 7.9 Mw earthquake, claimed deaths over 
20,000, damaged road 220,000 km and 2,900 bridges 
(Yin et al., 2009; Qi et al, 2010). 

Newmark (1965) has suggested a famous 
approach to obtain the earthquake induced 
displacement suitable for rigid plastic materials in the 
Fifth Rankine Lecture. He realized that whether the 
artificial earth fill dam was stable or not depended on 
the deformation during earthquake, rather than 
traditional slope safety factor less than 1.0 and what 
related to the seismic deformation directly was the 
changes of the stress history, rather than the 
maximum stress. This approach has been used 
successfully to predict the surface displacements of 
banks of dry, cohensionless soils subjected to known 
series of base motions (Goodman and Seed, 1966; 
Bustamente, 1965). However, the method assumes 
that yield acceleration is constant and the material is 
rigid, which does not meet the real behavior of rock 
mass. 

The dams filled with loose sand and 

moderate-dense saturated sandy soil bring about 
serious liquefaction and the yield acceleration 
decreased obviously accompanied with the 
accumulation of pore pressure during earthquake. For 
this reason, many attempts were made to improve this 
model, resulting in models for obtaining the 
earthquake induced displacement (Franklin and 
Chang, 1977; Makdisi and Seed, 1978; Sarma, 1975; 
Sarma, 1981; Seed et al., 1969; Seed, 1979; Richard 
and Elms, 1979; Lin and Whitman, 1986; Nadim and 
Whitman, 1983; Kramer and Smith, 1997; Rathje and 
Brady, 1999). Among them, Seed-Lee-Idriss method 
proposed by Seed in the 19th Rankine Lecture is the 
most representative (Seed, 1979). 

Rock slope dynamic response is controlled by 
discontinuities. Hendron (1971) introduced Newmark 
method (Newmark, 1965) to predict permanent 
displacement of rock block during earthquake. 
Crawford (1981, 1982) did dynamic test of the rock 
mass and found for a flat structural surface that the 
earthquake yield acceleration changes with the 
cumulative displacement and rate of the rock 
movement, rather than the constant. On this basis, the 
calculating method of earthquake permanent 
displacement of planar rock block was put forward, 
which took the cumulative displacement and rate of 
the rock movement of the discontinuities seismic 
yield acceleration into consideration. For a granite 
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block placed on a flat plane in lab test, Wang and 
Zhang (1982) found that the dynamic friction 
coefficient is lessening gradually with increasing of 
the displacement and rate of the block movement, 
Based on this, they put forward a method to evaluate 
the permanent displacement of the planar rock block. 

Discontinuities are not smooth but fluctuant in the 
rock mass (Patton, 1966). Dynamic tests of the rock 
mass showed that the discontinuities deteriorated 
gradually under the cycle load (Hutson, 1987; Plesha, 
1987; Hutson and Dowding, 1990; Jing et al., 1993; 
Kana et al., 1996; Fox et al., 1998; Lee et al., 2001; 
Homand et al., 2001; Yang et al., 2001), the asperities 
of the discontinuities plane reduced and undulation 
angles deteriorated gradually. The asperities of 
discontinuities are closely related to the shear strength 
of surface (Barton, 1971, 1973, 1976), thus the 
degradation of the discontinuities would affect the 
permanent displacement of rock mass slope directly. 

This paper presents a new approach to evaluate 
the permanent displacement of rock slope including 
planar block slide and wedge block slide, which 
considers the degradation of asperities of sliding 
surface during earthquake. The procedure of the 
method is put forward and some cases are illustrated 
to proof its effectiveness. 
 
2. Rock slope model 
 
2.1 Rock block slide model 

Fig. 1 is the rock block slope model which 
assumes that the mass of slide block is m, the dip 
angle of the slide surface is β and the seismic 
acceleration is Ag where A is seismic coefficient. The 
acute angle formed by seismic force and horizontal 
line is θ. The coordinate system is shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Rock block slope model 

 
Considering the equilibrium conditions of force in 

Y direction, we can get 
 
N = mgcosβ + mAgsin(θ - β)       (1) 

 
Where N is supportive force on which the slide plane 
gives the slide. 

In the X direction, we can have 
 

mAgcos(θ - β) + mgsinβ - Ntanφ = ma     (2) 
 
where φ is the angle of internal friction, x is the 
displacement of the slide block, a is the acceleration 
of the slide block. Then we can get 
 

a = Agcos(θ - β) + gsinβ - [gcosβ + Agsin(θ - 
β)]tanφ                                (3) 
 

When a = 0, A becomes the yield acceleration 
coefficient, Ac: 
 

Ac = (cosβtanφ - sinβ) / [cos(θ - β) - sin(θ - β) 
tanφ] = sin(β -φ) / cos(θ - β +φ)            (4) 

a = [Agcos(θ - β +φ) + gsin(β -φ)] / cosφ = 
gcos(θ - β +φ)·(A - Ac) / cosφ               (5) 
 
where, 
 

φ = φb + αk                         (6) 
 
φb is the basic friction angle of the slide surface, αk 
is the first order asperity angle of the slide surface 
(Patton, 1966), as shown in Fig. 2. 
 
 

 
 

Fig. 2 Conception model of one and two grades 
asperity angle (Patton, 1966) 

 
Substituting Eq. (6) into Eq. (5) gives 
 
a = Agcos(θ - β) + gsinβ - [gcosβ + Agsin(θ - 

β)]·tan(φb + αk) = Agcos(θ - β) + gsinβ - [gcosβ + 
Agsin(θ - β)]·[tanφb + tanαk] / [1 - tanφb·tanαk] (7) 
 

For flat slide surface αk = 0, thenφ=φb. Assume 
that a = 0, and we can get 

 
tanφb = [cos(θ - β)Ac + sinβcosβ] / [cosβ + sin(θ 

- β)Ac]                                  (8) 
 
2.2 Wedge block slide model 
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Wedge block slide failure is a common failure 
mode for rock slope. Static problem for wedge block 
slide was discussed by Hoek and Brown (1977). 

Fig. 3 is a wedge block formed by two penetrative 
discontinuities JA and JB of rock slope. Assuming that 
under a seismic acceleration A, the wedge block only 
vibrates in the vertical plane crossing the intersection 
line of the two discontinuities. The angle of 
inclination of intersection line is β, the mass of wedge 
is m, the normal force on JA and JB are RA and RB, 
both the internal friction angle of two discontinuities 
are φ. The coordinate system is shown in Fig. 3. 

In the X direction, we can have 
 

mgsinβ + mAgcos(θ - β) - (RA + RB)tanφ = ma  (9) 
 

Consider equilibrium conditions of the plane 
normal to the intersection line of two discontinuities, 
and assume N is component of mass force on this 
plane, we can get 

 
N = mgcosβ + mAgsin(θ - β)             (10) 

 
According to the equilibrium conditions, we can 

get 
 
RA = [Nsin(δ + γ)] / sin2γ 
RB = [Nsin(δ - γ)] / sin2γ                (11) 

 
Thus, 
 
RA + RB = Nsinδ / sinγ = mgsinδ[cosβ + Asin(θ - 

β)] / sinγ                                (12) 
 

Substituting Eq. (12) into Eq. (9) gives 
 
a = gsinβ + Agcos(θ - β) - gsinδ[cosβ + Asin(θ - 

β)]tanφ / sinγ                           (13) 
 

Substituting Eq. (6) into Eq. (13) gives 

 
Fig. 3 Wedge slope model 

 
a = gsinβ + Agcos(θ - β) - gsinδ[cosβ + Asin(θ - 

β)]·[tanφb + tanαk] / sinγ / [1 - tanφb·tanαk]   (14) 

 
 
 
Assuming that a = 0 and αk = 0, the Eq. (13) can 

be expressed 
tanφb = [sinβsinγ + Accos(θ - β)sinγ] / [sinδcosβ + 
Acsin(θ - β)sinδ]                        (15) 

 
3. Approach to evaluate permanent 

displacement considering 
degradation of slide surface 
during earthquake 

 
3.1 Law of degradation of the asperity angle (αk) of 
slide surface 

Under the role of the cyclic shear, asperities of the 
slide surface are deteriorated, as αk decreased 
gradually. According to Plesha (1987), we can have 

 
αk = (αk)0exp(-cWp)                    (16) 

 
Where (αk)0 is the initial asperity angle, c is the joint 
damage coefficient (m2/J) that is a test constant and 
Wp is the plastic work. 

According to Hutson (1987) and Hutson and 
Dowding (1990), 

 
c = 0.114JRC(σn / σc)                  (17) 

 
where σc is the uniaxial compressive strength of the 
material, σn is the normal force of the sliding surface 
during the shearing process. 
 
3.2 Law of degradation of the basic friction angle 
(φb) of slide surface 

For flat discontinuities, the asperity angle (αk) 
equals to 0, and the yield acceleration Ac is dependent 
on the basic friction angle ofφb. 

Through extensive researches, Crawford and 
Curran (1982) found that for the flat discontinuities 
the yield acceleration Ac was the function of the 
cumulative displacement x and displacement rate v. 
Thus it can be expressed as Ac(x, v). For the effect of 
cumulative displacement, Crawford and Curran 
(1982) adopted the model of post-peak constant 
displacement which is rigid and strain-softening to 
describe as 

 
Ac(x) = Am[1 - (1 - p)(x / x0)], x ≤ x0 
Ac(x) = Amp, x > x0                    (18) 

 
where p is the reduction coefficient which can be 
determined by tests, Am is the maximum acceleration 
of input seismic waves. According to extensive 
researches, Crawford and Curran (1982) believed that 
x0 takes 50mm appropriately for most of the rock. 

According to research of Crawford and Curran 
(1981, 1982), the rate effect of yield acceleration Ac(v) 
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can be expressed as 
 
Ac(v) = Am[1.0 ± 0.20log(v / v0)], v ≥ v0 
Ac(v) = Am, v < v0                    (19) 

 
Where “+” stands for different material. For weak 
materials (such as dolomite), take “+” while for hard 
materials (such as black granite, sandstone) take “-“. 
Crawford and Curran (1982) found that v0 is usually 
10mm/s through abundant test results. 

If not consider cumulative displacement effect 
and rate effect, we can get Ac(x, v) = Am according to 
Eq. (18) and Eq. (19). That means that yield 
acceleration is equal to maximum seismic 
acceleration, and this is obviously unreasonable. Eq. 
(18) and Eq. (19) proposed by Crawford and Curran 
(1982) have conceptual errors, and Am should be 
changed into initial acceleration Ac(0, 0). Meanwhile, 
Crawford and Curran (1982) did not consider about 
cumulative displacement effect and rate effect for Eq. 
(18) and Eq. (19) at the same time. Therefore, the 
paper considers initially the rate effect and revised Eq. 
(18) as 
 

Ac(v, x) = Ac(0, x)[1.0 ± 0.20log(v / v0)], v ≥ v0 
Ac(v, x) = A(0, x), v < v0               (20) 

 
Then considering the effects of cumulative 

displacement again, Eq. (20) can be expressed as 
 
Ac(v, x) = pAc(0, 0), x > 50mm, v < 10mm/s 
Ac(v, x) = Ac(0, 0)[1 - (1 - p)(x / 50)], x ≤ 50mm, 

v < 10mm/s 
Ac(v, x) = pAc(0, 0)[1 ± 0.20log(v / 10)], x > 

50mm, v ≥ 10mm/s 
Ac(v, x) = Ac(0, 0)[1 - (1 - p)(x / 50)][1 ± 

0.20log(v / 10)], x ≤ 50mm, v ≥ 10mm/s     (21) 
 

Thus substituting Eq. (21) into Eq. (8) and Eq. 
(15), we can get the law of degradation of the basic 
friction angle (φb) of slide surface for models shown 
in Fig. 1 and Fig. 3 respectively. 

Substituting Eq. (16), Eq. (17), Eq. (21) and Eq. 
(8) into Eq. (7) gives acceleration time travel history 
of the slide. By double integration, we can get 
seismic permanent displacement of planar sliding 
block as shown in Fig. 1 considering the degradation 
process of slide surface during earthquake. 

Substituting Eq. (16), Eq. (17) and Eq. (21) and 
Eq. (15) into Eq. (14), we can obtain motion 
acceleration of wedge under dynamic load. By double 
integration, we can obtain seismic permanent 
displacement of rock wedge sliding block as shown in 
Fig. 3 considering the degradation process of the slide 
surface during earthquake. 
 
4. Procedures for calculating seismic permanent 

displacement of rock slope 

 
(1) Substitute initial asperity angle of sliding 

surface (αk)0 and initial basic friction angle of sliding 
surface (φb)0 into Eq. (7) or Eq. (14) assume a = 0 
we can get Ac(0, 0) of the block in Fig. 1 or Fig. 3; 

(2) Discretize acceleration time-travel history into 
n∆t as A(0), A(∆t), A(2∆t), ···, A(m1∆t), ···, 
A(m2∆t), ···, A(n∆t); 

(3) Substitute A(0), initial asperity angle of 
sliding surface (αk)0, initial basic friction angle of 
sliding surface (φb)0 and Ac(0, 0) into Eq. (7) or Eq. 
(14), we can get (a)0, and then figure out (v)1. If 
(v)1 > 0, continue next step (4); if not, forward 
timestep, update corresponded time history of A(t), 
and continue step (3) till (v)m1 ≥ 0; 

(4) Integrate and obtain m1 steps’ displacements 
of (x)m1; 

(5) According to displacement (x)m1, we can get 
the work done by slide force and obtain the 
deteriorated asperity angle of sliding surface (αk)m1; 

(6) Substituting (x)m1 and (v)m1 into Eq. (21) and 
Eq. (8) or Eq. (15) gives tan(φb)m1; 

(7) Substituting (αk)m1 and (φb)m1 into Eq. (7) or 
Eq. (14) gives m1 steps’ acceleration (a)m1, and then 
figure out (v)m1+1. If (v)m1+1 ≥ 0, continue step (4); if 
not, forward timestep, update corresponded time 
history of A(t), and continue step (3) till (v)m1+m2 ≥ 0; 

(8) Repeating the above steps (3)-(7) till the n 

step, we can get the slope seismic permanent 
displacements (x)n = (x)n-1 + (v)n∆t. 
 
5. Cases 
 
(1) Case 1 

The case is shown as Fig. 1 and is from Wang and 
Zhang (1982), where  = 20°, vibration direction is 
horizontal (θ = 0), acceleration time travel history of 
bedrock is shown in Fig. 4 with maximum 
acceleration of 10.20m/s2, sliding surface is flat and 
without asperity (αk = 0), tanφb =0.75 and time step 
Δt = 0.001s. The lithology of the bed rock is granite. 
 

Fig. 4 Acceleration time travel history of Bedrock for 
case 1 and case 2 

 
Take p = 1 (not considering the deteriorated effect 

of the sliding surface ), p = 0.65 and p = 0.70 in Eq. 
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(21) respectively, and use procedures as detailed in 
section 4, we can evaluate the permanent 
displacement of the block as shown in Fig. 5. As it 
can be seen in the figure, the result reached based on 
p = 0.65 (805mm) or p = 0.70 (638mm) is much 
closer the lab tested result (730 mm) given by Wang 
and Zhang (1982). While the result calculated by 
Newmark (1965) or the result reached based on p = 1 
is much less that the tested result (see Fig. 5). The 
traditional Newmark method(1965) which didn’t 
consider the deteriorated effect of the sliding surface 
will give much less estimated seismic permanent 
displacement of the slope. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Comparison of permanent displacement of case 

1 reached by different measures 
(2) Case 2 

The case is identical to case 1 except for  = 30°, 
and the calculated result is shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6 Comparison of permanent displacement of case 
2 reached by different measures 

 
As it can be seen from Fig. 6, the result reached 

based on p = 0.1 is much closer to the tested result 
given by Wang and Zhang (1982). The result of 
Newmark method(1965) is much smaller than the test 
result, and even result given based on p = 1, see Fig. 
6. 

(3) Case 3 
The case is a wedge shaped block as shown in Fig. 

3, where  = 43°,  = 70°,  = 35°, the discontinuity 
JA and JB have the same friction parameters with c = 0, 

tan(φb), and the rock density is 2.2×103 kg/m3. 
Acceleration time travel history of bedrock is shown 
in Fig. 7, with the peak acceleration of 0.1g, 
horizontal vibration direction (θ = 0) and time step Δt 
of 0.005s. The calculated results can refer to Fig.8. 
As it can be seen in the figure, the results of 
traditional Newmark method(1965) is still near 2mm 
less than the results (p = 1) of the paper. What not to 
consider degradation of discontinuities has significant 
impact on the seismic permanent displacement of the 
slope. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Acceleration time travel history of Bedrock for 

case 3 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Comparison of permanent displacement of case 

3 reached by Newmark (1965) and the approach 
presented in the paper 

 
6. Discussions and conclusions 
 

The paper puts forward the algorithm for 
evaluating seismic permanent displacement of the 
plane block sliding and wedge block sliding of the 
rock slope which is taken degradation of the sliding 
surface into consideration. Through three cases 
studies, the paper shows that: 

(1) Three cases indicate that the degradation of 
the sliding surface has significant impact on seismic 
permanent displacement of the slope. The 
degradation of sliding surface must be taken into 
account when estimating the slope seismic permanent 
displacement. The method presented in the paper is 
able to estimate the value of slope seismic permanent 
displacement well, and the minimum value can be 
given when p = 1.0, while the maximum can be taken 
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when p = 0.1. 
(2) The traditional Newmark method(1965) does 

not consider degradation of sliding surface. The 
seismic permanent displacement of the slope given by 
this method is too small. For stable slope or one with 
small value of seismic slope permanent displacement, 
result given by the traditional Newmark method(1965) 
is a little closer to the result given by the method 
presented in the paper which considered the 
degradation of sliding surface. Case 3 clearly 
indicated this point. 
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